高中数学说课稿15篇
作为一名优秀的教育工作者,就有可能用到说课稿,说课稿有助于提高教师的语言表达能力。怎样写说课稿才更能起到其作用呢?以下是小编收集整理的高中数学说课稿,欢迎阅读与收藏。
高中数学说课稿1一.内容和内容分析
“函数的奇偶性”是人教版数学必修教材必修一第一章第三节的内容,本节的主要内容是研究函数的一个性质—函数的奇偶性,学习奇函数和偶函数的概念.奇偶性是函数的一条重要性质,教材从学生熟悉的两个特殊函数入手,从特殊到一般,从具体到抽象,从感性到理性比较系统地介绍了函数的奇偶性.从知识结构看,它既是函数概念的拓展和深化,又为后续研究指数函数、对数函数、幂函数、三角函数的基础,因此,本节课起着承上启下的重要作用。 本节课的教学重点:函数奇偶性的概念及判定。
二.目标和目标分析
(1)知识目标:从形和数两个方面进行引导,使学生理解奇偶性的概念,学会利用定义判断
简单函数的奇偶性。
(2)能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊
到一般的数学思想方法.
(3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。
三.教学问题诊断分析
导入有点慢,讲的有点细,导致时间上没有完成教学任务,感觉还是自己讲的太多,不能充分调动学生的积极性。
四.教学支持条件分析
用了多媒体,使用ppt,使得奇偶性函数概念的探究过程更形象更直观,是学生理解更深刻。
五.教学过程设计
为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序是:
1.设疑导入、观图激趣:
使用幻灯片展示图片蝴蝶、雪花等让学生感受生活中的美,从而引入对称在函数中的体现。
2.指导观察、形成概念:
作出函数y=x的图象,并观察这两个函数图象的对称性如何?
借助课件演示,让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况?借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。根据以上特点,请学生用完整的语言叙述定义,同时给出板书:
函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数,类比探究2
偶函数的过程,得到奇函数的概念,又通过具体的例子说明了定义域关于原点对称是研究奇偶性的前提。
3.学生探索、发展思维。
接着通过学案上的例一,总结函数奇偶性的判断方法及步骤:
(1)求出函数的定义域,并判断是否关于原点对称
(2)验证f(-x)=f(x)或f(-x)=-f(x)
(3)得出结论
由学生小结判断奇偶性的步骤之后,提出新的问题:函数按奇偶性如何分类?既奇又偶的函数是不是只有一个?试举例说明。
4.布置作业:
六.目标检测设计
学案上的题型主要包括奇偶性函数的判断及应用
七.教学反思:(从两方面)
1.思成功
一:是通过设计富有挑战性的问题来呈现背景,通过问题的探究和自主学习来获取相关概念,实现了 “教学逻辑”与“学习逻辑”的连通、“知识逻辑”与“认知逻辑”的连通;二:是在老师创设的情境中,每个学生都积极投入探究过程,学生在疑惑中探索,在探索中思考,在思考中发现,大部分学生积极性高涨,通过看别人怎样观察,
听别人怎样介绍,也学到了知识.
2.思不足
学生练习:在教学过程中应多注意学生的活动,由单一的问答式转化为多方位的考察,以采用
学生板演或者把学生练习投影到屏幕上让全班学生纠正等方式,更好的考察学生掌握情况。
语言组织:
在讲授过程中还要注意到说话语速,语言组织等讲授技巧,应该用平缓的语气讲授,语言描述要简练易懂,不能拖泥带水。
教学环节(的完整):
在授课过程中要注意到教学环节设计,我们的教学过程有复习引入、讲授新课、例题讲解、学生练习、课时小结、布置作业等几个重要的环节,由于时间的关系没有来得及小结造成教学设计不完善。在以后的教学过程中要注意这些环节。
以上是我对这节课以后的教学反思,还有很多地方做的还不完善,我要在以后的教学中努力改进这些错误,以便更好的适应教学,努力使自己的教学更上一层楼。
高中数学说课稿21、教学目标:
一、借助单位圆理解任意角的三角函数的定义。
二、根据三角函数的定义,能够判断三角函数值的符号。
三、通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。
四、让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。
2、教学重点与难点:
重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。
难点:任意角的三角函数概念的建构过程。
授课过程:
一、引入
在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一――三角函数。
二、创设情境
三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢?
学生情况估计:学生可能会提出两种定义的方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P的坐标。
问题:
1、锐角三角函数能否表示成第二种比值方式?
2、点P能否取在终边上的其它位置?为什么?
3、点P在哪个位置,比值会更简洁?(引出单位圆的定义)。指出sina=mP的函数依旧表示一个比值,不过其分母为1而已。
练习:计算的各三角函数值。
三、任意角的三角函数的定义
角的概念已经推广道了任意角,那么三角函数的定义在任意角的范围里改怎么定义呢?
尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗?
评价学生给出的定义。给出任意角三角函数的定义。
四、 ……此处隐藏34023个字……学习有助于学生进一步理解正弦函数的图象和性质,加深学生对函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识。同时为相关学科的学习打下扎实的基础。
⒉教材的重点和难点
重点是对周期变换、相位变换规律的理解和应用。
难点是对周期变换、相位变换先后顺序的调整,对图象变换的影响。
⒊教材内容的安排和处理
函数y=asin(ωx+φ)图象这部分内容计划用3课时,本节是第2课时,主要学习周期变换和相位变换,以及两种变换的综合应用。
二、目的分析
⒈知识目标
掌握相位变换、周期变换的变换规律。
⒉能力目标
培养学生的观察能力、动手能力、归纳能力、分析问题解决问题能力。
⒊德育目标
在教学中努力培养学生的“由简单到复杂、由特殊到一般”的辩证思想,培养学生的探究能力和协作学习的能力。
⒋情感目标
通过学数学,用数学,进而培养学生对数学的兴趣。
三、教具使用
①本课安排在电脑室教学,每个学生都拥有一台计算机,所有的计算机由一套多媒体演示控制系统连接,以实现师生、生生的相互沟通。
②课前应先把本课所需要的几何画板课件通过多媒体演示系统发送到每一台学生电脑。
四、教法、学法分析
本节课以“探究——归纳——应用”为主线,通过设置问题情境,引导学生自主探究,总结规律,并能应用规律分析问题、解决问题。
以学生的自主探究为主要方式,把计算机使用的主动权交给学生,让学生主动去学习新知、探究未知,在活动中学习数学、掌握数学,并能数学地提出问题、解决问题。
五、教学过程
教学过程设计:
预备知识
一、问题探究
⑴师生合作探究周期变换
⑵学生自主探究相位变换
二、归纳概括
三、实践应用
教学程序
设计说明
〖预备知识
1我们已经学习了几种图象变换?
2这些变换的规律是什么?
帮助学生巩固、理解和归纳基础知识,为后面的学习作铺垫。促使学生学会对知识的归纳梳理。
〖问题探究
(一)师生合作探究周期变换
(1)自己动手,在几何画板中分别观察①y=sinx→y=sin2x;②y=sinx→y=sin
x图象的变换过程,指出变换过程中图象上每一个点的坐标发生了什么变化。
(2) 在上述变换过程中,横坐标的伸长和缩短与ω之间存在怎样的关系?
(二)学生自主探究相位变换
(1)我们初中学过的由y=f(x)→y=f(x+a)的图象变换规律是怎样的?
(2) 令f(x)=sinx,则f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的变换是不是也符合上述规律呢?请动手用几何画板加以验证。
设计这个问题的主要用意是让学生通过观察图象变换的过程,了解周期变换的基本规律。
设计这个问题意图是引导学生再次认真观察图象变换的过程,以便总结周期变换的规律。
师生合作探究已经让学生掌握了探究图象变换的基本方法,在此基础上,由学生自主探究相位变换规律,提高学生的综合能力。
〖归纳概括
通过以上探究,你能否总结出周期变换和相位变换的一般规律?
设计这个环节的意图是通过对上述变换过程的探究,进而引导学生归纳概括,从现象到本质,总结出周期变换和相位变换的一般规律。
〖实践应用
(一)应用举例
(1)用五点法作出y=sin(2x+)一个周期内的简图。
(2)我们可以通过哪些方法完成y=sinx到y=sin(2x+)的图象变换
(3)请动手验证上述方法,把几何画板所得图象与用五点法作出的简图作比较,观察哪些方法是正确的,哪些方法是错误的。
(4)归纳总结
从上述的变换过程中,我们知道若f(x) =sin2x,则f(___)= sin(2x+),由f(x)→f(x+a)的变换规律得从y=sin2x →y= sin(2x+)的变换应该是_____.
(二)分层训练
a组题(基础题)
如何完成下列图象的变换:
①y=sin3x→y=sin(3x+1)
②y=sin(x+1) →y=sin(3x+1)
b组题(中等题)
如何完成下列图象的变换:
①y=sin3x→y=sin(3x+1)
②y=sin(x+1) →y=sin(3x+1)
③y=sinx →y=sin(3x+1)
c组题(拓展题)
①如何完成下列图象的变换:
y=sinx →y=sin(3x+1)
②我们知道,从f(x)到f(x)+k的变换可通过图象的上下平移(k>0上移)(k<0下移)|k|个单位得到。那么由y=f(x)→y=af(x)+k的变换中,振幅变换和上下平移变换是不是也有先后顺序呢?请通过实例加以验证。
让学生用五点法作出这个图象是为了验证变换方法是否正确。
给出这个问题的用意是开拓学生的思维,让学生从多角度思考问题。
这个步骤主要目的是培养学生的探究能力和动手能力。
这个问题的解决,是突破本课难点的关键。通过问题的解决,让学生理解如果先进行周期变换,而后进行相位变换,应特别关注x的变化量。
a组题重在基础知识的掌握,
由基础较薄弱的同学完成。
b组比a组增加了第③小题,
重在对两种变换的综合应用。
c组除了考查知识的综合应用,
还要求学生对新问题进行探究,
有较大难度,适合基础较好的
同学完成。
作业:
(1)必做题
(2)选做题
作业分为两种形式,体现作业的巩固性和发展性原则。选做题不作统一要求,供学有余力的学生课后研究。
六、评价分析
在本节的教与学活动中,始终体现以学生的发展为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,注意学生的品德、思维和心理等方面的发展。重视动手能力的培养,重视问题探究意识和能力的培养。同时,考虑不同学生的个性差异和发展层次,使不同的学生得到不同的发展,体现因材施教原则。
调节与反馈:
⑴验证两种变换的综合时,可能会出现有些学生无法观察到两种变换的区别这种情况,此时,教师除了加以引导外,还需通过教师演示和详细讲解加以解决。
⑵教学中可能出现个别学生无法正确操作课件的情况,这种情况下一定要强调学生的协作意识。
附:板书设计